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J. Phys. A: Math. Gen. 19 (1986) 3871-3881. Printed in Great Britain 

Numerical integration of stochastic differential equations with 
variable diffusivity 

I T Drummond, A Hoch and R R Horgan 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge CB3 9EW, U K  

Received 7 April 1986 

Abstract. We construct two-stage second-order algorithms for integrating stochastic 
differential equations with variable diffusivity in one and higher dimensions. 

1. Introduction 

The numerical simulation of diffusion processes is important in a number of different 
fields. Recently Greensite and Helfand (Helfand 1979, Greensite and Helfand 1981) 
presented Runge-Kutta algorithms for the integration of stochastic differential 
equations appropriate to the case of constant diffusivity. Similar methods were 
developed independently by Drummond er al (1984, 1986) and applied to the problem 
of turbulent diffusion of scalar and magnetic fields and to the stochastic quantisation 
of A@‘ field theory. 

However there are interesting problems such as the flow of fluids through non- 
uniform media (Collins 1961, Scheidegger 1974) which can be simulated by diffusion 
processes where the diffusivity depends on position. These are examples of so-called 
multiplicative noise problems. With the intention of applying it to the simulation of 
processes of the above type we have formulated an appropriate second-order Runge- 
Kutta algorithm for the relevant stochastic differential equation. 

Our algorithm, which is of a two-stage type, does not deal with the most general 
case where an arbitrary drift field is included along with the diffusion process. Klauder 
and Petersen (1985) have proposed such an algorithm for the general case. However 
we have found that it does not work with complete accuracy as a second-order algorithm. 
Mil’shtein ( 1974) has also discussed higher-order methods for stochastic differential 
equations but his approach does not lead to algorithms which satisfy our criteria. 

In § 2 we derive the Runge-Kutta integration procedure for a one-dimensional 
diffusion equation with variable diffusivity and demonstrate that it is correct to O(At’) 
at each step. In § 3 the results are illustrated by a simple example which can be worked 
out analytically and simulated numerically. We also examine a case where a straightfor- 
ward analytical approach is not possible. 

The algvrithm for a multidimensional problem without drift is derived in § 4. I t  
requires a slightly different treatment from the one-dimensional case because of the 
more complicated tensor structures which appear. The algorithm is applied to a simple 
model and the dependence of the systematic error on the time step is examined. We 
finish with some brief comments on future work. 

0305-4470/86/ 183871 + 11$02.50 @ 1986 The Institute of Physics 3871 
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2. Diffusion in one dimension 

Rather than study the stochastic differential equation directly, we will base our analysis 
on the corresponding diffusion equation. In this section we study an equation of the 
form 

a~ a d P  
a t  ax 
--- - +)ax 

where K ( X )  is the position-dependent diffusivity and P(x, t )  is a probability distribution 
in x for each time t .  

The time development of P(x, t )  can be viewed in two ways. First, we write 

P(x, t + A t )  = exp(AtH)P(x, t )  (2.2) 

where the operator H is given by 

d a 
ax ax 

H =- K ( X )  -. 

Second, we introduce the kernel function K(x’, t ’ ;  x, t )  which is the probability distribu- 
tion in x‘ at t ‘ ,  conditioned so that x’ = x at t ‘ =  t. We then have 

P(x’, t + A t ) =  dxK(x’ ,  t+At ;  x, t)P(x,  t ) .  (2.4) I 
If we set x‘ = x + 6, then K ( x +  6, t + A t ;  x, t )  is a narrow distribution in 6 with 

mean and variances both O(At). We denote this distribution by F ( t ) ,  suppressing its 
dependence on x, t and At .  Our procedure is to choose a prescription for F ( 6 )  such 
that the result of (2.2) for P(x, t + A t )  is reproduced to any given order in At.  In this 
paper we work to O(At’). 

In order to match the stochastic step 6 to (2.2) it is convenient to consider the time 
evolution of the expectation value (f), of a function f(x) ,  where 

= I dxf(x)P(x ,  t ) .  (2.5) 

We have from (2.2) 

dxf (x) ( l+AtH +$At2H2)P(x, t ) + O ( A t 3 ) .  (2.6) 

That is, using (2.3) for H, 

( f ) , + ~ ~  = dXf(X)[l + A t ( - d K ’ + d 2 K ) + ” f 2 ( - a ( K K ’ ’ ’ +  K’K’’) 

+a2(3KK”+ 2 K ’ * )  -d3(4K‘K) +d4K2)]P(X, t )  + O(At’) 

I 
where K ’  = dK/dx, etc, and a = d/dx. 

From our alternative point of view 

(f),+if = dx dx‘f(x’)K(x’,  t + A t ;  X, t)P(x,  t )  I 
i.e. 
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( f ) f + a f  = I dx d S f ( x + t ) F ( t ) P ( x ,  t ) .  

Since F ( 5 )  is a narrow distribution we can expand f (x  + 5) in a Taylor series 

(f ) 

where 

= dx P( x, t ) ( 1 + f d  + +Fa2 + :?a3 + 3@d4)f( x ) + O( A t 3 )  J 

Finally integrating by parts, we find 

( f ) f  +*, = 

If we compare (2.12) with (2.7) we see we must choose F ( 5 )  so that 

dxf( x )  ( 1 - d f + ;d2F - id3? + &d2P)  P(  x, t ) + O( A 1 ’ ) .  I 
f =  K ’ h t  ++(KK”’+ K ’ K ” ) h t 2  

52=2KAf+(3KK”+2K‘2)hf2 
- 

- 
t3 = 1 2 ~ ~ ’ b t ’  
5“ = 1 2 ~ * 6 t ’  
- 

where we have neglected terms O(At’) including all the higher moments. 
Note that to O ( A t )  it is sufficient to set 

5 = Ax = K ‘ A f  + ( 2 ~ A t ) ” ’ q  
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(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
(2.14) 
(2.15) 
(2.16) 

(2.17) 
where q is a Gaussian random variable of zero mean and unit variance. Our partial 
differential equation is therefore equivalent to an Ito-type stochastic differential 
equation of the form 

(2.18) 
where w is the standard white noise term. 

The next step is to formulate a prescription for 5 which reproduces the above 
expectation values. We use a two-stage prescription of the same type as Klauder and 
Petersen (1985). We introduce two intermediate positions: 

(2.19) 

X = K’(X)  + ( 2 K  ( X))1’2  W( ?)  

yl  = x +  alK’hf +P1(Kbt)1’2q 

y ,  = x + a 2 ~ ’ h f  + p2( ~ A t ) ” ~ q  (2.20) 

x x + (  = x +  a , , ~ ’ A t  + P 2 1 ( ~ A f ) 1 ’ 2 q  -k a2,~‘ (y2)At  P22(~(y l )Af)1’25  (2.21) 

and a final position 

where 7 and 5 are two independent Gaussian random variables of zero mean and unit 
variance. We omit the argument of K when it is the original point x. If we expand in 
powers of At”’ we find 

~ = K ~ ’ ~ ( P Z I ~ I + P ~ ~ ~ ) A ~ ~ ’ ~ + K ’ ( ( Y ~ ~  + ( ~ 2 2 + f P i P 2 2 ~ 5 ) A t  

+( K 1 / 2 K ~ Y a 2 2 P 2 7 ? + a P 1 7  I 2 2 5 ’ + 2  1 K12 Kl/z(a,--,P,rl 1 2 2  )5)Ar3’2  

+ ( K ” K ’ ~ ~ ~ ~ ~ + $ K ‘ ” K P : ~ ’ ) A ~ ~ + O ( ~ ~ ~ ~ ) .  (2.22) 
On averaging over the two Gaussian random variables we obtain the results: 

f =  K ’ ( ( Y 2 1  + ( ~ 2 2 ) A t  + ( ( Y ’ ( Y 2 2 K ” K ’ + ~ K “ ’ K P : ( Y 2 2 ) A f 2  (2.23) 
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- 

(2.24) 

t3 = 3 K ' K ( P : I + P : 2 + P 2 1 P 1 P ~ 2 ) ~ f 2  (2.25) 
5 ' = 3 ~ ~ ( P i ~ + P : ~ ) ~ A f ~ .  (2.26) 

Comparing these results with the requirements of (2.13)-(2.16) we obtain the 

a 2 2 + a 2 1 =  1 (2.27) 
a 2 2 f f 2  = f (2.28) 
a22P: = 1 (2.29) 
Pi1 +Pi2 = 2 (2.30) 
Pi2a,= 1 (2.31) 
2a22PzlP2+4PlP:2 = 3 (2.32) 
P2lPlP:2 = 2. (2.33) 

1 2 2  t2 = 4 P : I  + P:2)At+ - [."U + 4 : 2 ,  + K K " ( 2 a 2 2 P 2 , P 2 + 2 P l P 2 2 ) l A ~ 2  

- 

conditions 

These equations are satisfied by 

a22 = a  P 2 2 =  1 a, = 1 P , = 2  

a 2 1  = a  P2,= 1 a2 = 2 p2 = 2. 3 
(2.34) 

When the Klauder-Petersen ansatz (1985) is applied to this problem it gives an 
incorrect answer for condition (2.15) in which the factor 12 is replaced by 6. In the 
next section we consider particular examples of K ( X )  and compare our results with 
theoretical predictions. 

3. One-dimensional examples 

An interesting case to consider because of its theoretical tractability is one where the 
diffusivity has a simple quadratic dependence on position, i.e. 

with a and b both positive. If we set 

then (2.1) implies that { fn} satisfy simple differential equations. Thus 

In particular we have 

~ ( x )  = a -k bx2 (3.1) 

f f l  = (x") (3.2) 

f f l  = n( n - l)affl-2 + n ( n  + l)bffl. (3.3) 

f l  = 2M-l 
f2 = 2a + 6bf2 (3.4) 
f3=6afl+12bf3. 

For the particular case where the initial distribution is 6(x -xo), we obtain the solutions 

f l  = xo exp(2bt) 

(3.5) 
l a  
3 6  
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Using the algorithm developed in the previous section we have carried out a 
simulation of this problem on the ICL DAP at Queen Mary College, London, a parallel 
processor which allows us to deal simultaneously with the paths of 4096 particles. The 
statistical errors which we quote are derived from samples of between 8 x lo6 and 
4 x lo7 particle paths. 

Figure 1 shows a comparison between our simulation and the above theoretical 
results for the case xo = 1 ,  a = 1,  b =A, and a choice of A t  = 0.16. The results are clearly 
satisfactory, the statistical error being too small to show on the graph. However, since 
even a first-order algorithm will yield good results for sufficiently small time steps, the 
crucial issue is the dependence of the systematic error on At. 

100 

10 

1 
0.8 1.6 2 . 4  3.2 

f 

Figure 1. Comparison between theory (cf (3.1) and (3 .5) )  and simulation for a = 1, b = h 
and xo = 1. The graphs show the dependence on time of (A) f, , (B) fi + 4 and (C) f3 +yf,. 
These combinations are chosen to make the theoretical predictions (shown by the full 
lines) to be pure exponential. The dots representing the simulation are much larger than 
the errors. 

In the present case we can analyse this question exactly because the moments {fn}, 
as they develop in the discrete time series appropriate to the simulation, satisfy simple 
difference equations analogous to the differential equations of the continuous case. 
For example, if xp is the position of the particle after p steps, then 

X p + I  = x p  + 5 p  (3.6) 

where tP is chosen according to the prescription of P 2. Using a bar to denote the 
average over the tP ensemble we see that 

- 
z p + ,  = x p  + 5 p .  (3 .7)  

Hence, taking account of the specific form of K ( x ~ )  specified in (3.1) and using (2.13) 
we find 

(3.8) fp+, = xp ( 1  + 2bAt + 2b2At2 + O( A t 3 ) ) .  
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Averaging now over all steps we find 

fl ( p + 1 ) = f l  ( p ) ( 1 + 2 b A t + 2 b2A t 2  + 0 ( A  t 3 ) )  (3.9) 
where f l (  p )  = (xp). It is convenient to rewrite this result in the form 

f l ( p +  1) =f l (p)  exp(2bAt)(l +o(At3)) .  (3.10) 

The solution, given that all particles start at xo, is 

f , ( p )  =xoexp(2pbAt)(1 + o ( p A t 3 ) )  (3.11) 
where the correction O( pAt3) is a reasonable estimate for an upper bound to the actual 
error X,qPx1 O(At3). Setting t =PA?,  we have 

f i ( t )  =xoexp(2bt ) ( l+0( tAt2) ) .  (3.12) 
The calculation of the second moment begins with 

- - 
x;+l = x; + 2xpcp + 6; 

and using (2.13) and (2.14) yields 
x;+1= x i (  1 +6bAt + 18b2At2+0(At3))+ a(2At+6bAt2) +O(At3). 

Averaging over all the steps we find 

l a  
f 2 ( p + l )  = f 2 ( p )  exp(6bAt)( l+O(At3))+-  -(exp(6bAt)-l)+O(At3) (3.15) 3 b  

where we have also rearranged the A t  series into obvious exponential form. Equation 
(3.15) can be recast as 

(3.13) 

- 
(3.14) 

with the solution 

l a  
3 b  

exp(6bt)( l+O(tAt2))--  -. 

(3.16) 

(3.17) 

Third moments can be dealt with similarly though the calculation is a bit more 
complicated. Thus 

(3.18) 
- - -  

- x; + 3x;z-C 3xp5; + 6;.  X p + 1 -  
3 

Using (2.13)-(2.15) we find 

x i t l  = xi (  1 + 126At + 72b2Af2+ 0(At3))  + xp(6aAt + 42abAt2+ 0(Ar3)) .  (3.19) 
If we now average over all the steps and use the solution of the differential equation 
for guidance we obtain 

- 

(3.20) 

and hence that 

3 a  
exp(12bt)(l +O(rAt’)) -- -xo exp(2bt)(l +O(tAr2)).  5 b  (3.21) 

In all these cases the error at given t is proportional to At’. Note that at each stage 
it was important that the moments of tP be includedcorrectly with error O(At3). In 
particular, to estimate f 3 (  t )  it is necessary to include 6; correct to this order. This is 
the point at which the Klauder-Petersen algorithm goes wrong. 
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1.21. 

i 
t 

1 

1 

9 0 1  ' .  

t i 
8.6 1 0 0.5 

At 
0 0 5  

A I  

I 
22 t 

Figure 2. The first three moments of x for t = 1.2 plotted 
against A t  for K ( X )  given in (3.1) with a = 1, b = &  and 
xo= 1. The graphs are ( a )  f,, ( b )  f2 and (c )  f3. The 
results of the first-order scheme are signified by crosses 
and those of the second-order scheme by dots. 

1 0  0 
A t  

In figure 2 we show for the first three moments the dependence of the systematic 
error on At for t = 1.2. The results of the second-order algorithm are compared with 
those of the first-order version. The latter clearly shows an error proportional to At 
at small At ,  while the former shows a A t 2  behaviour as predicted. 

The corresponding results for the first two moments for the case 

K ( X )  = 2+sin x (3.22) 

are shown in figure 3. Again the contrast between the first- and second-order algorithms 
is evident. 

4. Higher-dimensional case 

In this section we study the diffusion equation 

aP/at  = a,K(x)a,P. (4.1) 
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A t  A t  

Figure 3. The first two moments of x for t = 1.2 plotted against A t  for K ( X )  given in (3.22) 
with xo= 1 .  The graphs are ( a )  first moment and ( b )  second moment. The results of the 
first-order scheme are signified by crosses and those of the second-order scheme by dots. 

It is possible to generalise this equation by replacing the scalar diffusivity K ( X )  with 
a diffusivity tensor. However, even the simpler version in (4.1) exhibits features not 
present in the one-dimensional case already discussed. It also has interesting applica- 
tions to the theory of random media and is therefore of importance on its own account. 

X, = K,(  X )  -k (2K (X))”’W, ( f ) (4.2) 

(w,(t)w,(t’))  = 4 W t -  0 (4.3) 

K , ( X )  = a , K ( X ) .  (4.4) 

The stochastic differential equation corresponding to (4.1) is 

where the w,( t )  are independent white noise processes: 

and 

Further indices attached to K (x) indicate the appropriate multiple derivative. 
Following an analysis along the lines of the one-dimensional case we find that we 

can approximate the solutions to (4.1) or (4.2) correctly to O(At’) by a sequence of 
discrete steps x, + x, + 6, where 6, is drawn from an ensemble which satisfies 

- 
tt = K , A f  + 4 ( K l K l l  + K K , l l ) A t 2  (4.5) 
- 

= 2 K S , A t + [ K , K 1 + 2 K K , , + 6 , , ( K : + K K l l ) ] A t 2  (4.6) 

Note that, although these results reduce to (2.13)-(2.17) in one dimension, in 
general they exhibit a complicated tensor structure containing distinct terms which 
coincide in one dimension. It is for this reason that our prescription for the step ti 
contains more parameters than its one-dimensional equivalent. 
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Our ansatz for ti utilises three intermediate points. Thus 
y ~ ‘ ) = x i + a o ~ i A t + P o ( ~ h t ) l / Z ~ i  (4.9) 

(4.11) 

(4.12) 

The remaining equation does not yield new information. 
Comparing these results with (4.5)-(4.7) we find 

a 2 1  + a 2 2  = 1 (4.15) 
(Y22CYI = f (4.16) 
a22p: = 1 (4.17) 
a 2 2 P , P 2 1 =  1 (4.18) 

(4.19) 

P: ,  + ( P 2 2 +  Y 2 A 2  = 2 (4.20) 

( P 2 2 - t  Y 2 2 ) ( P Z z P : +  Y 2 2 P : )  = 2 (4.21) 
P Z l ( P Z Z +  Y Z 2 ) ( P 2 2 P Z f  Y 2 2 P 3 )  = 2 *  (4.22) 

( P 2 2 +  Y 2 2 ) ( P z z a 2 +  Y 2 2 a 3 )  + $ ( P z z P z +  Y z ~ P ~ ) ~ - f ( P z z +  Y r r ) ( P 2 2 P : +  Y 2 2 P : )  = 1 

These equations do not have a unique solution but are satisfied by 

a 2 2  = 1 Pz2=f(J2+ 1 )  y22=- f (J2-1)  

a21 = 0 P 2 1 =  1 

(4.23) 

a,=; & = 4 2 .  
In figure 4 we show the results for the systematic error in various moments, when 

(4.24) 
K has the form 

K ( X ,  y )  = 4+sin x+s in  y 
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I b )  

la I 

1.31 

I 
. ’ 

1 .o 
0 1 .o 

A t  

1.8 r 

1.3 1 

1.2 1 

icl 

1.2 I::::: 

1.01 
0 1 0  

A t  

l.0l 
0 1.0 

A t  
Figure 4. Three moments for the two-dimensional problem for t = 1.2 plotted gainst A 
for K ( x , ~ )  given in (4.24) with x , = y , =  1. The graphs are ( a )  (x), ( b )  (x2) and (c)  ( x y ) .  
The results of the first-order scheme are signified by crosses and those of the second-order 
scheme by dots. 

the initial distribution being S(x - 1)S(y - 1). Clearly the first-order algorithm reveals 
the expected linear dependence on Ar while the error for the second-order algorithm 
is proportional to A t 2  at low At. 

5. Conclusions 

We have constructed an effective second-order algorithm for integrating stochastic 
differential equations with a position-dependent diffusivity. Because of the complexity 
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of its tensor structure the high-dimensional algorithm required three intermediate 
evaluation points per step as opposed to the two points which were sufficient for the 
simpler one-dimensional case. 

One limitation of our algorithm is that it is confined to cases where the diffusivity 
is a scalar function. Clearly it is of great interest to extend it to deal with tensor 
diffusivities. Another limitation is the absence of drift. We suspect that this is the 
more difficult of the two limitations to overcome. It might be that a three-stage algorithm 
is required in order to achieve steps correct to O(At') in the presence of drift. In any 
case it is obviously important to construct higher-order algorithms. 
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